Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.370
Filtrar
2.
Nat Commun ; 15(1): 3797, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714656

RESUMO

Nucleoporins rich in phenylalanine/glycine (FG) residues form the permeability barrier within the nuclear pore complex and are implicated in several pathological cellular processes, including oncogenic fusion condensates. The self-association of FG-repeat proteins and interactions between FG-repeats play a critical role in these activities by forming hydrogel-like structures. Here we show that mutation of specific FG repeats of Nup98 can strongly decrease the protein's self-association capabilities. We further present a cryo-electron microscopy structure of a Nup98 peptide fibril with higher stability per residue compared with previous Nup98 fibril structures. The high-resolution structure reveals zipper-like hydrophobic patches which contain a GLFG motif and are less compatible for binding to nuclear transport receptors. The identified distinct molecular properties of different regions of the nucleoporin may contribute to spatial variations in the self-association of FG-repeats, potentially influencing transport processes through the nuclear pore.


Assuntos
Microscopia Crioeletrônica , Complexo de Proteínas Formadoras de Poros Nucleares , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Humanos , Mutação , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Poro Nuclear/química , Glicina/química , Glicina/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Sequências Repetitivas de Aminoácidos , Ligação Proteica , Modelos Moleculares , Interações Hidrofóbicas e Hidrofílicas
3.
Ital J Pediatr ; 50(1): 81, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650033

RESUMO

BACKGROUND: The variants of nucleoporins are extremely rare in hereditary steroid-resistant nephrotic syndrome (SRNS). Most of the patients carrying such variants progress to end stage kidney disease (ESKD) in their childhood. More clinical and genetic data from these patients are needed to characterize their genotype-phenotype relationships and elucidate the role of nucleoporins in SRNS. METHODS: Four patients of SRNS carrying biallelic variants in the NUP93, NUP107 and NUP160 genes were presented. The clinical and molecular genetic characteristics of these patients were summarized, and relevant literature was reviewed. RESULTS: All four patients in this study were female and initially presented with SRNS. The median age at the onset of the disease was 5.08 years, ranging from 1 to 10.5 years. Among the four patients, three progressed to ESKD at a median age of 7 years, ranging from 1.5 to 10.5 years, while one patient reached stage 3 chronic kidney disease (CKD3). Kidney biopsies revealed focal segmental glomerulosclerosis in three patients. Biallelic variants were detected in NUP93 in one patient, NUP107 in two patients, as well as NUP160 in one patient respectively. Among these variants, five yielded single amino acid substitutions, one led to nonsense mutation causing premature termination of NUP107 translation, one caused a single nucleotide deletion resulting in frameshift and truncation of NUP107. Furthermore, one splicing donor mutation was observed in NUP160. None of these variants had been reported previously. CONCLUSION: This report indicates that biallelic variants in NUP93, NUP107 and NUP160 can cause severe early-onset SRNS, which rapidly progresses to ESKD. Moreover, these findings expand the spectrum of phenotypes and genotypes and highlight the importance of next-generation sequencing in elucidating the molecular basis of SRNS and allowing rational treatment for affected individuals.


Assuntos
Mutação , Síndrome Nefrótica , Síndrome Nefrótica/congênito , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Feminino , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Criança , Síndrome Nefrótica/genética , Pré-Escolar , China , Lactente , População do Leste Asiático
4.
BMC Cancer ; 24(1): 353, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504158

RESUMO

NUP155 is reported to be correlated with tumor development. However, the role of NUP155 in tumor physiology and the tumor immune microenvironment (TIME) has not been previously examined. This study comprehensively investigated the expression, immunological function, and prognostic significance of NUP155 in different cancer types. Bioinformatics analysis revealed that NUP155 was upregulated in 26 types of cancer. Additionally, NUP155 upregulation was strongly correlated with advanced pathological or clinical stages and poor prognosis in several cancers. Furthermore, NUP155 was significantly and positively correlated with DNA methylation, tumor mutational burden, microsatellite instability, and stemness score in most cancers. Additionally, NUP155 was also found to be involved in TIME and closely associated with tumor infiltrating immune cells and immunoregulation-related genes. Functional enrichment analysis revealed a strong correlation between NUP155 and immunomodulatory pathways, especially antigen processing and presentation. The role of NUP155 in breast cancer has not been examined. This study, for the first time, demonstrated that NUP155 was upregulated in breast invasive carcinoma (BRCA) cells and revealed its oncogenic role in BRCA using molecular biology experiments. Thus, our study highlights the potential value of NUP155 as a biomarker in the assessment of prognostic prediction, tumor microenvironment and immunotherapeutic response in pan-cancer.


Assuntos
Neoplasias da Mama , Carcinoma , Humanos , Feminino , Neoplasias da Mama/genética , Apoptose , Mama , Proliferação de Células/genética , Prognóstico , Microambiente Tumoral/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética
5.
PLoS Pathog ; 20(3): e1011830, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512975

RESUMO

Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced GTPase that inhibits human immunodeficiency virus-1 (HIV-1) infection by preventing nuclear import of the viral preintegration complex. The HIV-1 capsid (CA) is the major viral determinant for sensitivity to MX2, and complex interactions between MX2, CA, nucleoporins (Nups), cyclophilin A (CypA), and other cellular proteins influence the outcome of viral infection. To explore the interactions between MX2, the viral CA, and CypA, we utilized a CRISPR-Cas9/AAV approach to generate CypA knock-out cell lines as well as cells that express CypA from its endogenous locus, but with specific point mutations that would abrogate CA binding but should not affect enzymatic activity or cellular function. We found that infection of CypA knock-out and point mutant cell lines with wild-type HIV-1 and CA mutants recapitulated the phenotypes observed upon cyclosporine A (CsA) addition, indicating that effects of CsA treatment are the direct result of blocking CA-CypA interactions and are therefore independent from potential interactions between CypA and MX2 or other cellular proteins. Notably, abrogation of GTP hydrolysis by MX2 conferred enhanced antiviral activity when CA-CypA interactions were abolished, and this effect was not mediated by the CA-binding residues in the GTPase domain, or by phosphorylation of MX2 at position T151. We additionally found that elimination of GTPase activity also altered the Nup requirements for MX2 activity. Our data demonstrate that the antiviral activity of MX2 is affected by CypA-CA interactions in a virus-specific and GTPase activity-dependent manner. These findings further highlight the importance of the GTPase domain of MX2 in regulation of substrate specificity and interaction with nucleocytoplasmic trafficking pathways.


Assuntos
Capsídeo , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Capsídeo/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ciclofilina A/genética , Ciclofilina A/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Antivirais/metabolismo , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo
6.
Front Immunol ; 15: 1330738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449868

RESUMO

Nucleoporins (NUPs) are cellular effectors of human immunodeficiency virus-1 (HIV-1) replication that support nucleocytoplasmic trafficking of viral components. However, these also non-canonically function as positive effectors, promoting proviral DNA integration into the host genome and viral gene transcription, or as negative effectors by associating with HIV-1 restriction factors, such as MX2, inhibiting the replication of HIV-1. Here, we investigated the regulatory role of NUP98 on HIV-1 as we observed a lowering of its endogenous levels upon HIV-1 infection in CD4+ T cells. Using complementary experiments in NUP98 overexpression and knockdown backgrounds, we deciphered that NUP98 negatively affected HIV-1 long terminal repeat (LTR) promoter activity and lowered released virus levels. The negative effect on promoter activity was independent of HIV-1 Tat, suggesting that NUP98 prevents the basal viral gene expression. ChIP-qPCR showed NUP98 to be associated with HIV-1 LTR, with the negative regulatory element (NRE) of HIV-1 LTR playing a dominant role in NUP98-mediated lowering of viral gene transcription. Truncated mutants of NUP98 showed that the attenuation of HIV-1 LTR-driven transcription is primarily contributed by its N-terminal region. Interestingly, the virus generated from the producer cells transiently expressing NUP98 showed lower infectivity, while the virus generated from NUP98 knockdown CD4+ T cells showed higher infectivity as assayed in TZM-bl cells, corroborating the anti-HIV-1 properties of NUP98. Collectively, we show a new non-canonical function of a nucleoporin adding to the list of moonlighting host factors regulating viral infections. Downregulation of NUP98 in a host cell upon HIV-1 infection supports the concept of evolutionary conflicts between viruses and host antiviral factors.


Assuntos
HIV-1 , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Poro Nuclear/genética , Repetição Terminal Longa de HIV/genética , Expressão Gênica
8.
Genetics ; 226(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302116

RESUMO

The nuclear pore complex (NPC) mediates the selective exchange of macromolecules between the nucleus and the cytoplasm. Neurodegenerative diseases such as amyotrophic lateral sclerosis are characterized by mislocalization of nucleoporins (Nups), transport receptors, and Ras-related nuclear proteins into nucleoplasmic or cytosolic aggregates, underscoring the importance of precise assembly of the NPC. The assembly state of large protein complexes is strictly monitored by the protein quality control system. The ubiquitin-proteasome system may eliminate aberrant, misfolded, and/or orphan components; however, the involvement of the ubiquitin-proteasome system in the degradation of nonnative Nups in the NPC remains unclear. Here, we show that in Saccharomyces cerevisiae, although Nup1 (the FG-Nup component of the central core of the NPC) was stable, C-terminally green fluorescent protein-tagged Nup1, which had been incorporated into the NPC, was degraded by the proteasome especially under heat stress conditions. The degradation was dependent on the San1 ubiquitin ligase and Cdc48/p97, as well as its cofactor Doa1. We also demonstrate that San1 weakly but certainly contributes to the degradation of nontagged endogenous Nup1 in cells defective in NPC biogenesis by the deletion of NUP120. In addition, the overexpression of SAN1 exacerbated the growth defect phenotype of nup120Δ cells, which may be caused by excess degradation of defective Nups due to the deletion of NUP120. These biochemical and genetic data suggest that San1 is involved in the degradation of nonnative Nups generated by genetic mutation or when NPC biogenesis is impaired.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas de Saccharomyces cerevisiae , Poro Nuclear/genética , Poro Nuclear/química , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/análise , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Elife ; 122024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189406

RESUMO

Cells must maintain a pool of processed and charged transfer RNAs (tRNA) to sustain translation capacity and efficiency. Numerous parallel pathways support the processing and directional movement of tRNA in and out of the nucleus to meet this cellular demand. Recently, several proteins known to control messenger RNA (mRNA) transport were implicated in tRNA export. The DEAD-box Protein 5, Dbp5, is one such example. In this study, genetic and molecular evidence demonstrates that Dbp5 functions parallel to the canonical tRNA export factor Los1. In vivo co-immunoprecipitation data further shows Dbp5 is recruited to tRNA independent of Los1, Msn5 (another tRNA export factor), or Mex67 (mRNA export adaptor), which contrasts with Dbp5 recruitment to mRNA that is abolished upon loss of Mex67 function. However, as with mRNA export, overexpression of Dbp5 dominant-negative mutants indicates a functional ATPase cycle and that binding of Dbp5 to Gle1 is required by Dbp5 to direct tRNA export. Biochemical characterization of the Dbp5 catalytic cycle demonstrates the direct interaction of Dbp5 with tRNA (or double-stranded RNA) does not activate Dbp5 ATPase activity, rather tRNA acts synergistically with Gle1 to fully activate Dbp5. These data suggest a model where Dbp5 directly binds tRNA to mediate export, which is spatially regulated via Dbp5 ATPase activation at nuclear pore complexes by Gle1.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatases/genética , Catálise , Complexo de Proteínas Formadoras de Poros Nucleares/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Am J Med Genet A ; 194(5): e63529, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38179855

RESUMO

Nucleoporins (NUPs) are a group of transporter proteins that maintain homeostasis of nucleocytoplasmic transport of proteins and ribonucleic acids under physiological conditions. Biallelic pathogenic variants in NUP214 are known to cause susceptibility to acute infection-induced encephalopathy-9 (IIAE9, MIM#618426), which is characterized by severe and early-onset febrile encephalopathy causing neuroregression, developmental delay, microcephaly, epilepsy, ataxia, brain atrophy, and early death. NUP214-related IIAE9 has been reported in eight individuals from four distinct families till date. We identified a novel in-frame deletion, c.202_204del p.(Leu68del), in NUP214 by exome sequencing in a 20-year-old male with episodic ataxia, seizures, and encephalopathy, precipitated by febrile illness. Neuroimaging revealed progressive cerebellar atrophy. In silico predictions show a change in the protein conformation that may alter the downstream protein interactions with the NUP214 N-terminal region, probably impacting the mRNA export. We report this novel deletion in NUP214 as a cause for a late onset and less severe form of IIAE9.


Assuntos
Encefalopatia Aguda Febril , Encefalopatias , Epilepsia , Microcefalia , Masculino , Humanos , Adulto Jovem , Adulto , Encefalopatias/diagnóstico , Encefalopatias/genética , Epilepsia/genética , Microcefalia/genética , Atrofia , Complexo de Proteínas Formadoras de Poros Nucleares/genética
13.
Dev Cell ; 59(4): 482-495.e6, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38272027

RESUMO

Mutations or dysregulation of nucleoporins (Nups) are strongly associated with neural developmental diseases, yet the underlying mechanisms remain poorly understood. Here, we show that depletion of Nup Seh1 in radial glial progenitors results in defective neural progenitor proliferation and differentiation that ultimately manifests in impaired neurogenesis and microcephaly. This loss of stem cell proliferation is not associated with defects in the nucleocytoplasmic transport. Rather, transcriptome analysis showed that ablation of Seh1 in neural stem cells derepresses the expression of p21, and knockdown of p21 partially restored self-renewal capacity. Mechanistically, Seh1 cooperates with the NuRD transcription repressor complex at the nuclear periphery to regulate p21 expression. Together, these findings identified that Nups regulate brain development by exerting a chromatin-associated role and affecting neural stem cell proliferation.


Assuntos
Neocórtex , Células-Tronco Neurais , Animais , Camundongos , Diferenciação Celular , Expressão Gênica , Neocórtex/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
14.
PLoS Pathog ; 20(1): e1011640, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215165

RESUMO

Retroviral reverse transcription starts within the capsid and uncoating and reverse transcription are mutually dependent. There is still debate regarding the timing and cellular location of HIV's uncoating and reverse transcription and whether it occurs solely in the cytoplasm, nucleus or both. HIV can infect non-dividing cells because there is active transport of the preintegration complex (PIC) across the nuclear membrane, but Murine Leukemia Virus (MLV) is thought to depend on cell division for replication and whether MLV uncoating and reverse transcription is solely cytoplasmic has not been studied. Here, we used NIH3T3 and primary mouse dendritic cells to determine where the different stages of reverse transcription occur and whether cell division is needed for nuclear entry. Our data strongly suggest that in both NIH3T3 cells and dendritic cells (DCs), the initial step of reverse transcription occurs in the cytoplasm. However, we detected MLV RNA/DNA hybrid intermediates in the nucleus of dividing NIH3T3 cells and non-dividing DCs, suggesting that reverse transcription can continue after nuclear entry. We also confirmed that the MLV PIC requires cell division to enter the nucleus of NIH3T3 cells. In contrast, we show that MLV can infect non-dividing primary DCs, although integration of MLV DNA in DCs still required the viral p12 protein. Knockdown of several nuclear pore proteins dramatically reduced the appearance of integrated MLV DNA in DCs but not NIH3T3 cells. Additionally, MLV capsid associated with the nuclear pore proteins NUP358 and NUP62 during infection. These findings suggest that simple retroviruses, like the complex retrovirus HIV, gain nuclear entry by traversing the nuclear pore complex in non-mitotic cells.


Assuntos
Infecções por HIV , Complexo de Proteínas Formadoras de Poros Nucleares , Animais , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Células NIH 3T3 , Vírus da Leucemia Murina/genética , Proteínas Virais , Proteínas do Capsídeo , Retroviridae , DNA , Células Dendríticas
16.
J Exp Bot ; 75(1): 60-72, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37849222

RESUMO

Nucleoporin 50 (Nup50) is an evolutionarily conserved protein that is a constituent of the nuclear pore complex (NPC); however, its physiological role in plants is unclear. Arabidopsis has two Nup50 proteins, Nup50a and Nup50b, which are highly expressed in developing seeds. Green fluoresceent protein (GFP)-fused Nup50a and Nup50b are localized exclusively in the nucleopolasm, implying an additional function beyond the NPC in the nuclear envelope. To investigate the function of Nup50s, we employed the CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9] system to generate a nup50a nup50b double mutant, which exhibited premature translation termination of both Nup50 proteins. While the mutant showed no significant abnormal phenotype during vegetative growth, the nup50a nup50b seeds had an abnormal shape compared with the wild type. Comparative transcriptomics using immature seeds revealed that Nup50s regulate the expression of various genes, including cell wall-related genes. The nup50a nup50b seeds exhibited reduced seed longevity and salinity stress tolerance. Tetrazolium uptake and mucilage release assays implied that the nup50a nup50b seeds had greater water permeability than the wild type. Taken together, our results imply that Nup50s play a critical role in seed formation by regulating gene expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas Formadoras de Poros Nucleares , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Longevidade , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Estresse Salino , Sementes
17.
Cancer Genet ; 280-281: 1-5, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056049

RESUMO

BACKGROUND: Only rare cases of acute myeloid leukemia (AML) have been shown to harbor a t(8;11)(p11.2;p15.4). This translocation is believed to involve the fusion of NSD3 or FGFR1 with NUP98; however, apart from targeted mRNA quantitative PCR analysis, no molecular approaches have been utilized to define the chimeric fusions present in these rare cases. CASE PRESENTATION: Here we present the case of a 51-year-old female with AML with myelodysplastic-related morphologic changes, 13q deletion and t(8;11), where initial fluorescence in situ hybridization (FISH) assays were consistent with the presence of NUP98 and FGFR1 rearrangements, and suggestive of NUP98/FGFR1 fusion. Using a streamlined clinical whole-genome sequencing approach, we resolved the breakpoints of this translocation to intron 4 of NSD3 and intron 12 of NUP98, indicating NUP98/NSD3 rearrangement as the likely underlying aberration. Furthermore, our approach identified small variants in WT1 and STAG2, as well as an interstitial deletion on the short arm of chromosome 12, which were cryptic in G-banded chromosomes. CONCLUSIONS: NUP98 fusions in acute leukemia are predictive of poor prognosis. The associated fusion partner and the presence of co-occurring mutations, such as WT1, further refine this prognosis with potential clinical implications. Using a clinical whole-genome sequencing analysis, we resolved t(8;11) breakpoints to NSD3 and NUP98, ruling out the involvement of FGFR1 suggested by FISH while also identifying multiple chromosomal and sequence level aberrations.


Assuntos
Leucemia Mieloide Aguda , Feminino , Humanos , Pessoa de Meia-Idade , Hibridização in Situ Fluorescente , Sequência de Bases , Leucemia Mieloide Aguda/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Translocação Genética
18.
Hum Cell ; 37(1): 245-257, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993750

RESUMO

Nucleoporin 93 (NUP93) is an important component of the nuclear pore complex, exhibiting pro-tumorigenic properties in some cancers. However, its function in esophageal squamous cell carcinoma (ESCC) has not been elucidated. This study aimed to investigate the effects of NUP93 in ESCC and the underlying mechanisms involved. Through analysis of public human cancer datasets, we observed higher expression of NUP93 in esophageal cancer tissues than in normal tissues. Stable ESCC cell lines with NUP93 overexpression or knockdown were established by lentiviral vector transduction and puromycin selection. NUP93 knockdown suppressed the proliferation, colony formation, cell cycle transition, migration, and invasion of ESCC cells, while the overexpression of NUP93 displayed opposite effects. NUP93 positively regulated epithelial-mesenchymal transition and AKT signaling transduction in ESCC cells. In addition, NUP93 increased the expression of programmed death ligand 1 (PD-L1) in ESCC cells and attenuated NK cell-mediated lysis of ESCC cells. In vivo experiments demonstrated that NUP93 promotes the growth of ESCC in nude mice, enhances Ki67 and PD-L1 expression, and promotes AKT signaling transduction in xenografts. Mechanistically, we demonstrated that the HECT domain E3 ubiquitin protein ligase 1 (HECTD1) contributes to the ubiquitination and degradation of NUP93 and acts as a tumor suppressor in ESCC. To conclude, this study has shown that NUP93 has pro-tumor properties in ESCC and that HECTD1 functions as an upstream regulator of NUP93 in ESCC. These findings may contribute to the investigation of potential therapeutic targets in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Plant Cell ; 36(2): 346-366, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877462

RESUMO

The nuclear pore complex (NPC) has multiple functions beyond the nucleo-cytoplasmic transport of large molecules. Subnuclear compartmentalization of chromatin is critical for gene expression in animals and yeast. However, the mechanism by which the NPC regulates gene expression is poorly understood in plants. Here we report that the Y-complex (Nup107-160 complex, a subcomplex of the NPC) self-maintains its nucleoporin homeostasis and modulates FLOWERING LOCUS C (FLC) transcription via changing histone modifications at this locus. We show that Y-complex nucleoporins are intimately associated with FLC chromatin through their interactions with histone H2A at the nuclear membrane. Fluorescence in situ hybridization assays revealed that Nup96, a Y-complex nucleoporin, enhances FLC positioning at the nuclear periphery. Nup96 interacted with HISTONE DEACETYLASE 6 (HDA6), a key repressor of FLC expression via histone modification, at the nuclear membrane to attenuate HDA6-catalyzed deposition at the FLC locus and change histone modifications. Moreover, we demonstrate that Y-complex nucleoporins interact with RNA polymerase II to increase its occupancy at the FLC locus, facilitating transcription. Collectively, our findings identify an attractive mechanism for the Y-complex in regulating FLC expression via tethering the locus at the nuclear periphery and altering its histone modification.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Histonas/genética , Histonas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hibridização in Situ Fluorescente , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Cromatina/genética , Cromatina/metabolismo , Flores/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo
20.
Ann Lab Med ; 44(4): 335-342, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145892

RESUMO

Background: The three best-known NUP214 rearrangements found in leukemia (SET:: NUP214, NUP214::ABL1, and DEK::NUP214) are associated with treatment resistance and poor prognosis. Mouse experiments have shown that NUP214 rearrangements alone are insufficient for leukemogenesis; therefore, the identification of concurrent mutations is important for accurate assessment and tailored patient management. Here, we characterized the demographic characteristics and concurrent mutations in patients harboring NUP214 rearrangements. Methods: To identify patients with NUP214 rearrangements, RNA-sequencing results of diagnostic bone marrow aspirates were retrospectively studied. Concurrent targeted next-generation sequencing results, patient demographics, karyotypes, and flow cytometry information were also reviewed. Results: In total, 11 patients harboring NUP214 rearrangements were identified, among whom four had SET::NUP214, three had DEK::NUP214, and four had NUP214::ABL1. All DEK::NUP214-positive patients were diagnosed as having AML. In patients carrying SET::NUP214 and NUP214::ABL1, T-lymphoblastic leukemia was the most common diagnosis (50%, 4/8). Concurrent gene mutations were found in all cases. PFH6 mutations were the most common (45.5%, 5/11), followed by WT1 (27.3%, 3/11), NOTCH1 (27.3%, 3/11), FLT3-internal tandem duplication (27.3%, 3/11), NRAS (18.2%, 2/11), and EZH2 (18.2%, 2/11) mutations. Two patients represented the second and third reported cases of NUP214::ABL1-positive AML. Conclusions: We examined the characteristics and concurrent test results, including gene mutations, of 11 leukemia patients with NUP214 rearrangement. We hope that the elucidation of the context in which they occurred will aid future research on tailored monitoring and treatment.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animais , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Estudos Retrospectivos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA